函数相乘和相除的导数及证明

世界杯瑞典

函数求导简介

函数相乘求导

[

f

(

x

)

g

(

x

)

]

=

f

(

x

)

g

(

x

)

+

f

(

x

)

g

(

x

)

[f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x)

[f(x)⋅g(x)]′=f′(x)g(x)+f(x)g′(x)

证明:

[

f

(

x

)

g

(

x

)

]

=

lim

Δ

x

0

f

(

x

+

Δ

x

)

g

(

x

+

Δ

x

)

f

(

x

)

g

(

x

)

Δ

x

\qquad [f(x)\cdot g(x)]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}

[f(x)⋅g(x)]′=Δx→0lim​Δxf(x+Δx)⋅g(x+Δx)−f(x)⋅g(x)​

=

lim

Δ

x

0

f

(

x

+

Δ

x

)

g

(

x

+

Δ

x

)

f

(

x

)

g

(

x

+

Δ

x

)

+

f

(

x

)

g

(

x

+

Δ

x

)

f

(

x

)

g

(

x

)

Δ

x

\qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x+\Delta x)+f(x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}

=Δx→0lim​Δxf(x+Δx)⋅g(x+Δx)−f(x)⋅g(x+Δx)+f(x)⋅g(x+Δx)−f(x)⋅g(x)​

=

lim

Δ

x

0

f

(

x

)

Δ

x

g

(

x

)

+

g

(

x

)

Δ

x

f

(

x

)

Δ

x

\qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)+g'(x)\Delta x\cdot f(x)}{\Delta x}

=Δx→0lim​Δxf′(x)Δx⋅g(x)+g′(x)Δx⋅f(x)​

=

f

(

x

)

g

(

x

)

+

f

(

x

)

g

(

x

)

\qquad \qquad \qquad \qquad =f'(x)g(x)+f(x)g'(x)

=f′(x)g(x)+f(x)g′(x)

函数相除求导

[

f

(

x

)

g

(

x

)

]

=

f

(

x

)

g

(

x

)

f

(

x

)

g

(

x

)

g

2

(

x

)

[\dfrac{f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}

[g(x)f(x)​]′=g2(x)f′(x)g(x)−f(x)g′(x)​

证明:

[

f

(

x

)

g

(

x

)

]

=

lim

Δ

x

0

f

(

x

+

Δ

x

)

g

(

x

+

Δ

x

)

f

(

x

)

g

(

x

)

Δ

x

\qquad [\dfrac{f(x)}{g(x)}]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x}

[g(x)f(x)​]′=Δx→0lim​Δxg(x+Δx)f(x+Δx)​−g(x)f(x)​​

=

lim

Δ

x

0

f

(

x

+

Δ

x

)

g

(

x

)

f

(

x

)

g

(

x

+

Δ

x

)

g

(

x

+

Δ

x

)

g

(

x

)

1

Δ

x

\qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x}

=Δx→0lim​g(x+Δx)g(x)f(x+Δx)g(x)−f(x)g(x+Δx)​⋅Δx1​

=

lim

Δ

x

0

f

(

x

+

Δ

x

)

g

(

x

)

f

(

x

)

g

(

x

)

+

f

(

x

)

g

(

x

)

f

(

x

)

g

(

x

+

Δ

x

)

g

(

x

+

Δ

x

)

g

(

x

)

1

Δ

x

\qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x}

=Δx→0lim​g(x+Δx)g(x)f(x+Δx)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+Δx)​⋅Δx1​

=

lim

Δ

x

0

f

(

x

)

Δ

x

g

(

x

)

f

(

x

)

g

(

x

)

Δ

x

g

2

(

x

)

Δ

x

\qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)-f(x)\cdot g'(x)\Delta x}{g^2(x)\cdot \Delta x}

=Δx→0lim​g2(x)⋅Δxf′(x)Δx⋅g(x)−f(x)⋅g′(x)Δx​

=

f

(

x

)

g

(

x

)

f

(

x

)

g

(

x

)

g

2

(

x

)

\qquad \qquad \qquad \qquad =\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}

=g2(x)f′(x)g(x)−f(x)g′(x)​